Notiz / Note

Photoreaktionen mit Fulleren- C_{60} [3 + 2]-Photocycloaddition von 2,3-Diphenyl-2*H*-azirin

Johannes Averdung^{a[1]}, Evelyn Albrecht^a, Jürgen Lauterwein^{a[2]}, Heinrich Luftmann^{a[3]}, Jochen Mattay^{*a}, Holger Mohn^{b[4]}, Wolfgang H. Müller^{b[4]} und Hans-Ulrich ter Meer^{b[4]}

Organisch-Chemisches Institut der Universität Münster^a, Orléansring 23, D-48149 Münster

Angewandte Physik, Hoechst AG^b, Postfach 800320, D-65926 Frankfurt/Main

Eingegangen am 24. November 1993

Key Words: Fullerenes / Azirines / Photochemistry / [3 + 2] Cycloadditions / Electron transfer reactions

Photoreactions with C_{60} -Fullerene. [3 + 2] Photocycloaddition of 2,3-Diphenyl-2*H*-azirine

Upon irradiation 2,3-Diphenyl-2*H*-azirine (2) is added to C_{60} **1** with formation of mono and oligo adducts. 1,9-(3,4-Dihydro-2,5-diphenyl-2*H*-pyrrolo)fulleren-60 (3) has been isolated and identified by standard spectroscopic methods. Me-

Die außergewöhnlich vielfältige Reaktivität^[5] des kürzlich entdeckten Fullerens $C_{60}^{[6]}$, hervorgerufen durch dessen ausgesprochen elektrophilen und dieno/dipolarophilen Eigenschaften^[7], führte in kurzer Zeit zu einer Vielzahl von Fullerenderivaten^[8]. Vornehmlich wurden bislang thermische Reaktionen und Funktionalisierungen mit C₆₀ untersucht, über photochemische Derivatisierungen von C₆₀ gibt es bisher nur wenige Arbeiten. Beispielsweise polymerisiert C₆₀ bei Bestrahlung mit UV oder sichtbarem Licht; als Mechanismus wird eine [2 + 2]-Cycloaddition mit sich selbst angenommen^[9]. Durch Photooxidation wurde Fullerenepoxid C₆₀O erzeugt^[10] und Wilson, Schuster et al. berichteten kürzlich über die [2 + 2]-Photocycloaddition von Enonen an C₆₀^[11].

Uns gelang nun im Rahmen unserer Forschungen über [3 + 2]-Cycloadditionen mit 2*H*-Azirinen^[12] die Darstellung von 1,9-(3,4-Dihydro-2,5-diphenyl-2*H*-pyrrolo)fulleren-60 (**3**) durch Photocycloaddition von 2,3-Dipheny-2*H*-azirin (**2**)^[13] an C₆₀.

Beim Bestrahlen einer äquimolaren Lösung von C_{60} (1) und 2 in Toluol mit UV-Licht ($\lambda_{max} = 300$ nm) entsteht das schwarzbraune Monoaddukt 3 (31% bezogen auf eingesetztes C_{60}) (Schema 1) und ein braunes Bisaddukt (10%). Wird das Azirin 2 im 10fachen Überschuß eingesetzt, so entstehen neben 3 auch Polyaddukte. Massenspektrometrisch können Mono- bis Pentakisaddukte nachgewiesen werden. Die etwas polareren Produkte werden durch Säulenchromatographie vom nicht umgesetzten C_{60} (43%) abgetrennt und durch präparative Umkehrphasen-Hochleistungsflüssigkeitschromatographie (HPLC) aufgetrennt. 3 ist bei Raumtemperatur mehrere Wochen stabil und sublimiert im Vakuum (<0.01 mbar) bei 25°C unzersetzt (MS- und UV/Vis-Kontrolle). In Toluol zersetzt sich das Monoaddukt beim Erhitzen über 70°C. C_{60} konnte dabei nicht zurückgewonnen werden.

3 wurde massenspektrometrisch, IR-, UV/Vis-, ¹H-NMR- und ¹³C-NMR-spektroskopisch charakterisiert (Tab. 1). Das Molekül-Ion fragmentiert unter DCI-Massenspektrometriebedingungen nur geringfügig (m/z = 914, MH⁺); im DEI-Massenspektrum erhält chanistic studies revealed two reaction paths leading to 3, i.e. the classic 1,3-dipolar cycloaddition via the nitrile ylide 4 (direct irradiation) or a route via 2-azaallenyl radical cations 5 (sensitization by photoinduced electron transfer).

Schema 1. Umsetzung von C₆₀ mit 2,3-Diphenyl-2H-azirin (2)

man nur ein schwaches Signal für m/z = 913, da PhCN und die Azirin-Einheit leicht abgespalten werden. Das UV/Vis-Spektrum enthält zwei für die durch [3 + 2]-Photocycloaddition entstandene geschlossene 6-6-Ring-überbrückte 1,9-Dihydrofullerenstruktur charakteristische Absorptionen bei 431 und 697 nm^[14]. Eine offene 1,6-substituierte [10]Annulenstruktur kann ausgeschlossen werden: Die 57 ¹³C-NMR Signale (drei mit doppelter Intensität) der quartären aromatischen C-Atome zwischen $\delta = 134.39$ und 155.85 sowie die chemische Verschiebung der aliphatischen sp³ hybridisierten C₆₀-Atome ($\delta = 78.47$ und 88.93) deuten auf eine geschlossene Struktur mit C₁-Symmetrie hin^[15]. Die ¹H-NMR-Signale der aromatischen Protonen liegen verglichen mit denen des Edukts **2** we-

Chem. Ber. 1994, 127, 787-789 © VCH Verlagsgese

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994

0009-2940/94/0404-0787 \$ 10.00+.25/0

gen des Einflusses der paramagnetischen Ringströme in den C₆₀-Fünfringen bei tieferem Feld^[16]. Das aliphatische Proton wird ebenfalls stark entschirmt; es erfährt eine Tieffeldverschiebung von 3.85 ppm. Das IR-Spektrum enthält neben den für die 3,4-Dihydro-2H-pyrrol-Struktur charakteristischen Banden vier Banden bei 526, 573, 1179 und 1425 cm⁻¹, die den Absorptionen des C₆₀-Kerns entsprechen^[17].

Tab. 1. Ausgewählte physikalische Daten der Addukte

3: MS (70 eV): m/z (%): 914 (1.5), 93 (1.2)[M+], 812 (4), 811 (13), 810 (18) [M+ - PhCN], 722 (22), 721 (53), 720 (68) [M+ - C14H11N], 361 (5), 360 (28) [M++ - C14H11N], 194 (71), 193 (100) [M+ - C60], 192 (66), 166 (48), 165 (71), 90 (87). - MS (DCI) (NH3): m/z (%): 915 (83), 914 (100) [MH+]. - UV/Vis (Toluol, c = 3.61 · 10⁻⁴ mol l⁻¹): λ_{max} (ε) = 314 (27300), 325 (sh, 27000), 405 (sh, 3300), 431 (2400), 458 (br, 1230), 697 (br, 250-150).- FT-IR $(KBr): \hat{v} \ [cm^{-1}] = 2961 \text{ m}, 2917 \text{ s}, 2848 \text{ m}, 1680 \text{ s},$ 1606 s, 1425 s (C₆₀), 1322 m, 1291 s, 1179 s (C_{60}) , 778 m, 723 m, 695 s, 573 w (C_{60}) , 546 w, 526 s (C_{60}) , 444 w - ¹H-NMR (360 MHz; CS₂/[D₆]-Aceton 10:1): δ = 7.17 (s, 1H, CH), 7.35 (tt, ³J(H,H) = 7.5 Hz, ⁴J(H,H) = 1.3 Hz, 1H; ArH (4)), 7.46 (m, 2H; ArH (3,5)), 7.53 (m, 3H; ArH), 7.70 (m, 2H; ArH (2,6)), 8.23 (m, 2H; ArH). - 13C-NMR (90,5 MHz, CS2/[D6]-Aceton 10:1) δ = 78.47 (aliphat. quart. C₆₀-C-Atom), 88.87 (CH), 88.93 (aliphat. quart. C60-C-Atom), 128.78 (2C), 128.83, 129.14 (2C), 129.46 (2C), 129.46 (2C), 131.03 (H-subst. aromat. C-Atome), 134.39. 135.37, 136.77 (2C), 140.27, 135.14. 140.31. 140.59, 140.69 (2C), 141.03, 142.13, 142.23. 142.32, 142.37, 142.50, 142.53, 142.65, 142.67. 142.68, 142.76, 142.79, 143.04, 143.13, 143.18, 143.20, 143.25, 143.65, 143.67, 144.52, 144.54, 144.85, 144.92, 145.39, 145.49, 145.53, 145.57, 145.69, 145.81, 145.85, 145.86, 145.99, 146.10, 146.18, 146.19, 146.26, 146.37, 146.38, 146.45 (2C), 146.79, 146.85, 147.10, 147.41, 147.43. 147.74, 148.34, 149.41, 153.28, 155.85 (57 Arensignale), 170.51 (C=N).

Bisaddukt: MS (DCI) (NH₃): m/z > 400(%): 1300 (29) [MH+] von Trisaddukt, 1110 (16), 1109 (48), 1108 (100), 1107 (91) [MH+], 915 (24), 914 (100) [MH+ -C14H11N]; UV/Vis (Toluol) unstrukturiert. - 1H-NMR (360 MHz, $CS_2/[D_6]$ Aceton 10:1): δ = 7.20-8.44 (m, br; ArH).

Das ¹H-NMR Spektrum des Bisaddukts zeigt zwischen $\delta = 7.1$ und 8.4 zahlreiche, verbreiterte Signale. Wir nehmen deshalb an, daß das Bisaddukt aus Regioisomeren besteht, welche eine große Zahl von sich überlagernden Absorptionen verursachen^[18].

Weitere Untersuchungen zum Reaktionsmechanismus zeigen, daß die Photocycloaddition von 2,3-Diphenyl-2*H*-azirin (2) an C_{60} (1) nach zwei unterschiedlichen Mechanismen erfolgen kann (Schema 2).

Wird in die n- π *-Absorptionsbande ($\lambda_{max} = 285$ nm) des Azirins 2 eingestrahlt, so erfolgt die [3 + 2]-Cycloaddition über das durch Ringöffnung intermediär gebildete Nitrilylid 4. Bei Wellenlängen \geq 400 nm wird 2 nicht angeregt. Die Reaktion mit C₆₀ (1) findet dann nur in Gegenwart von 9,10-Dicyananthracen (DCA) als Sensibilisator statt; die [3 + 2]-Cycloaddition verläuft in diesem Fall unter Photoelektronentransfer (PET) über das 2-Azaallenyl-RadiSchema 2. Photoreaktion von 2,3-Diphenyl-2H-azirin (2) mit C₆₀ unter direkter Bestrahlung und PET-Bedingungen

kalkation 5^[12]. Wird ohne Sensibilisatorzusatz mit Wellenlängen \geq 400 nm bestrahlt, wobei C₆₀ die allein absorbierende Komponente ist, so kann keine Adduktbildung beobachtet werden; in den Triplettzustand angeregtes C60^[19] reagiert somit nicht mit dem Azirin 2 im Grundzustand.

Die hier vorliegenden experimentellen Ergebnisse dokumentieren die Synthese eines geschlossenen 6-6-Ring-überbrückten Fullerens durch Photocycloaddition und bestätigen den ausgesprochen dipolarophilen Charakter von C₆₀.

Wir danken der Hoechst AG (Frankfurt) für die Bereitstellung von Fulleren-C₆₀. Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und dem Land Nordrhein-Westfalen gefördert.

Experimenteller Teil

1,9-(3,4-Dihydro-2,5-diphenyl-2H-pyrrolo) fulleren-60 (3): Eine Lösung von 120 mg (0.167 mmol) C_{60} (Hoechst Goldgrade, $C_{60} >$ 99.4%) und 33 mg (0.171 mmol) 2,3-Diphenyl-2H-azirin (2) in 60 ml Toluol wird mit Ar entgast. In sechs Bestrahlungsröhren aus Pyrexglas wird dazu im Rayonet-RPR-100-Reaktor, bestückt mit RPR-3000-A-UV-Lampen (Southern New England Ultraviolet Company), bei 300 nm 100 min bestrahlt. Dabei ändert sich die Farbe der Lösung von violett nach braunrot. Das Lösungsmittel wird i. Vak. bei Raumtemp. abdestilliert. Nicht umgesetztes C₆₀ (a) wird säulenchromatographisch (Merck Aluminiumoxid, neutral, Akt. I, Toluol) abgetrennt und anschließend eine braunrote Produktfraktion mit Toluol/Acetonitril (1.5:1) eluiert. Die Addukte im Eluat werden mittels präp. HPLC getrennt (Stationäre Phase: Merck Lichrosorb RP-18 7µ, Mobile Phase: 9.5 ml min⁻¹ Toluol/ Acetonitril, 1.25:1, Injektionsvolumen 3 ml, Detektion bei 310 nm): (b) gelbbraune Fraktion, (c) gelbbraune Fraktion von Bisaddukt und (d) braunrote Fraktion von 3. Eindampfen und Trocknen i.Vak. ergeben 52 mg (43%) C_{60} (a), 5 mg noch nicht identifiziertes Produkt (b), 19 mg (10%) Bisaddukt (c) und 48 mg (31%) 3 (d).

- Massenspektrometrie. [4]
- Darstellung und Reinigung von C_{60} . Siehe beispielsweise R. Taylor, D. R. Walton, *Nature* **1993**, [5] 363. 685-693. [6]
- ^[6a] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, *Nature* 1985, 318, 162–163. ^[6b] W. Krätschmer, L.

^[1] J. Averdung, Diplomarbeit, Universität Münster, 1993/94.

^[2] NMR-Analytik. [3]

- [7] Siehe beispielsweise F. Wudl, Acc. Chem. Res. 1992, 25, 157 - 161
- [8]
- A. Hirsch, Angew. Chem. 1993, 105, 1189-1192; Angew. Chem. Int. Ed. Engl. 1993, 32, 1138.
 A. M. Rao, P. Zhou, K.-A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W.-T. Lee, X.-X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan, I. J. Amster, Science 1993, 259, 955-957.
 K. M. Crusten, L. L. Bekking, W. K. Bekking, J. M. Müller, B. [9]
- ^[10] K. M. Creegan, J. L. Robbins, W. K. Robbins, J. M. Millar, R. D. Sherwood, P. J. Tindall, D. M. Cox, A. B. Smith III, J. P. McCauley, Jr., D. R. Jones, R. T. Gallagher, J. Am. Chem. Soc. 1993, 114, 1103-1105.
 ^[11] S. Wilke, D. Karnindia, V. We, D. I. Schuster, J. Am. Chem.
- [11] S. R. Wilson, N. Kaprindis, Y. Wu, D. I. Schuster, J. Am. Chem. Soc. 1993, 115, 8495-8496.
 [12] S. M. Wilson, N. Kaprindis, Y. Wu, D. I. Schuster, J. Am. Chem.
- ^[12] F. Müller, J. Mattay, Chem. Ber. 1993, 126, 543-549.

- ^[13] F. W. Fowler, A. Hassner, L. A. Levy, J. Am. Chem. Soc. 1967,
- [^{13]} F. W. Fowler, A. Hassner, L. A. Levy, J. Am. Chem. Soc. 1967, 89, 2077-2082.
 [^{14]} [^{14a]} L. Isaacs, A. Wehrsig, F. Diederich, Helv. Chim. Acta 1993, 76, 1231-1250. [^{14b]} Y. Z. An, J. L. Anderson, Y. Rubin, J. Org. Chem. 1993, 58, 4799-4801.
 [^{15]} E. Vogel, Pure Appl. Chem. 1982, 54, 1015-1039.
 [^{16]} A. Pasquarello, M. Schlüter, R. C. Haddon, Science 1992, 257, 1660-1661.
 [^{17]} [^{17a]} W. Krätschmer, K. Fostiropoulos, D. R. Huffman, Chem. Phys. Lett. 1990, 170, 167-170, [^{17b]} A. Hirsch, T. Grösser, A. Skiebe, A. Soi, Chem. Ber. 1993, 126, 1061-1167.
 [^{18]} A. Hirsch, A. Soi, H. R. Karfunkel, Angew. Chem. 1992, 104, 808-810; Angew. Chem. Int. Ed. Engl. 1992, 31, 766.
 [^{19]} T. W. Ebbesen, K. Tanigaki, S. Kuroshima, Chem. Phys. Lett. 1991, 181, 501-504.

[380/93]